If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+42x-54=0
a = 4; b = 42; c = -54;
Δ = b2-4ac
Δ = 422-4·4·(-54)
Δ = 2628
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2628}=\sqrt{36*73}=\sqrt{36}*\sqrt{73}=6\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-6\sqrt{73}}{2*4}=\frac{-42-6\sqrt{73}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+6\sqrt{73}}{2*4}=\frac{-42+6\sqrt{73}}{8} $
| 2k+9=-3 | | 15-3(7+6x)=-19x-(6-x) | | 5(7-2x)-(10x-6)=24-2(7+10x) | | 5(7−2q)−(10q−6)=24−2(7+10q) | | -9-8x+8=-x+12-7x | | 9x-6-10x=-8-x+2 | | 18^2-17x+5=1 | | 61=7y-2 | | 5x+9=5x+13 | | 3x=7÷5 | | 6(2x+1)=58 | | 2x+6(2x-15)=50 | | x/5-6=x/7 | | 26=x/3+x/10 | | 6+9x=-102 | | 5(x+1)-4=51 | | 5(x+1)−4=51 | | 30+4(6-5x)=-4(x-11)+10 | | 1/2x+7/4=3+1/6x | | 10(x-7)-x=-248-5(5+4x) | | 3+7(x-10)=-45-(2-2x) | | 1/6x+7/12=3+1/18x | | 3+7(b−10)=−45−(2−2b) | | 2(x+3)-8(x-5)=40 | | 1/2x+3/4=2+7/6x | | 2(q+3)−8(q−5)=40 | | 42-(7-7(c-8))=0 | | 1/4x-1/2=-1/2x-1/2 | | 4x^2-36x-77=0 | | —x/4+2=10 | | 4-8(9m-3)=2m+5 | | 42=7-7(c-8) |